Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lifestyle, gene gain and loss, and transcriptional remodeling cause divergence in the transcriptomes of Phytophthora infestans and Pythium ultimum during potato tuber colonization.

Identifieur interne : 000974 ( Main/Exploration ); précédent : 000973; suivant : 000975

Lifestyle, gene gain and loss, and transcriptional remodeling cause divergence in the transcriptomes of Phytophthora infestans and Pythium ultimum during potato tuber colonization.

Auteurs : Audrey M V. Ah-Fong [États-Unis] ; Jolly Shrivastava [États-Unis] ; Howard S. Judelson [États-Unis]

Source :

RBID : pubmed:29017458

Descripteurs français

English descriptors

Abstract

BACKGROUND

How pathogen genomes evolve to support distinct lifestyles is not well-understood. The oomycete Phytophthora infestans, the potato blight agent, is a largely biotrophic pathogen that feeds from living host cells, which become necrotic only late in infection. The related oomycete Pythium ultimum grows saprophytically in soil and as a necrotroph in plants, causing massive tissue destruction. To learn what distinguishes their lifestyles, we compared their gene contents and expression patterns in media and a shared host, potato tuber.

RESULTS

Genes related to pathogenesis varied in temporal expression pattern, mRNA level, and family size between the species. A family's aggregate expression during infection was not proportional to size due to transcriptional remodeling and pseudogenization. Ph. infestans had more stage-specific genes, while Py. ultimum tended towards more constitutive expression. Ph. infestans expressed more genes encoding secreted cell wall-degrading enzymes, but other categories such as secreted proteases and ABC transporters had higher transcript levels in Py. ultimum. Species-specific genes were identified including new Pythium genes, perforins, which may disrupt plant membranes. Genome-wide ortholog analyses identified substantial diversified expression, which correlated with sequence divergence. Pseudogenization was associated with gene family expansion, especially in gene clusters.

CONCLUSION

This first large-scale analysis of transcriptional divergence within oomycetes revealed major shifts in genome composition and expression, including subfunctionalization within gene families. Biotrophy and necrotrophy seem determined by species-specific genes and the varied expression of shared pathogenicity factors, which may be useful targets for crop protection.


DOI: 10.1186/s12864-017-4151-2
PubMed: 29017458
PubMed Central: PMC5635513


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lifestyle, gene gain and loss, and transcriptional remodeling cause divergence in the transcriptomes of Phytophthora infestans and Pythium ultimum during potato tuber colonization.</title>
<author>
<name sortKey="Ah Fong, Audrey M V" sort="Ah Fong, Audrey M V" uniqKey="Ah Fong A" first="Audrey M V" last="Ah-Fong">Audrey M V. Ah-Fong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521</wicri:regionArea>
<wicri:noRegion>92521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shrivastava, Jolly" sort="Shrivastava, Jolly" uniqKey="Shrivastava J" first="Jolly" last="Shrivastava">Jolly Shrivastava</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521</wicri:regionArea>
<wicri:noRegion>92521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA. howard.judelson@ucr.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521</wicri:regionArea>
<wicri:noRegion>92521</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29017458</idno>
<idno type="pmid">29017458</idno>
<idno type="doi">10.1186/s12864-017-4151-2</idno>
<idno type="pmc">PMC5635513</idno>
<idno type="wicri:Area/Main/Corpus">000906</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000906</idno>
<idno type="wicri:Area/Main/Curation">000906</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000906</idno>
<idno type="wicri:Area/Main/Exploration">000906</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Lifestyle, gene gain and loss, and transcriptional remodeling cause divergence in the transcriptomes of Phytophthora infestans and Pythium ultimum during potato tuber colonization.</title>
<author>
<name sortKey="Ah Fong, Audrey M V" sort="Ah Fong, Audrey M V" uniqKey="Ah Fong A" first="Audrey M V" last="Ah-Fong">Audrey M V. Ah-Fong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521</wicri:regionArea>
<wicri:noRegion>92521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shrivastava, Jolly" sort="Shrivastava, Jolly" uniqKey="Shrivastava J" first="Jolly" last="Shrivastava">Jolly Shrivastava</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521</wicri:regionArea>
<wicri:noRegion>92521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA. howard.judelson@ucr.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521</wicri:regionArea>
<wicri:noRegion>92521</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Conserved Sequence (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Ontology (MeSH)</term>
<term>Host Specificity (MeSH)</term>
<term>Host-Parasite Interactions (genetics)</term>
<term>Life Style (MeSH)</term>
<term>Phytophthora infestans (genetics)</term>
<term>Phytophthora infestans (physiology)</term>
<term>Plant Tubers (parasitology)</term>
<term>Pythium (genetics)</term>
<term>Pythium (physiology)</term>
<term>Solanum tuberosum (parasitology)</term>
<term>Transcription, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Gene Ontology (MeSH)</term>
<term>Interactions hôte-parasite (génétique)</term>
<term>Mode de vie (MeSH)</term>
<term>Phytophthora infestans (génétique)</term>
<term>Phytophthora infestans (physiologie)</term>
<term>Pythium (génétique)</term>
<term>Pythium (physiologie)</term>
<term>Solanum tuberosum (parasitologie)</term>
<term>Spécificité d'hôte (MeSH)</term>
<term>Séquence conservée (MeSH)</term>
<term>Transcription génétique (MeSH)</term>
<term>Tubercules (parasitologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Host-Parasite Interactions</term>
<term>Phytophthora infestans</term>
<term>Pythium</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Interactions hôte-parasite</term>
<term>Phytophthora infestans</term>
<term>Pythium</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Solanum tuberosum</term>
<term>Tubercules</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Plant Tubers</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Phytophthora infestans</term>
<term>Pythium</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Phytophthora infestans</term>
<term>Pythium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Conserved Sequence</term>
<term>Gene Expression Profiling</term>
<term>Gene Ontology</term>
<term>Host Specificity</term>
<term>Life Style</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Gene Ontology</term>
<term>Mode de vie</term>
<term>Spécificité d'hôte</term>
<term>Séquence conservée</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>How pathogen genomes evolve to support distinct lifestyles is not well-understood. The oomycete Phytophthora infestans, the potato blight agent, is a largely biotrophic pathogen that feeds from living host cells, which become necrotic only late in infection. The related oomycete Pythium ultimum grows saprophytically in soil and as a necrotroph in plants, causing massive tissue destruction. To learn what distinguishes their lifestyles, we compared their gene contents and expression patterns in media and a shared host, potato tuber.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Genes related to pathogenesis varied in temporal expression pattern, mRNA level, and family size between the species. A family's aggregate expression during infection was not proportional to size due to transcriptional remodeling and pseudogenization. Ph. infestans had more stage-specific genes, while Py. ultimum tended towards more constitutive expression. Ph. infestans expressed more genes encoding secreted cell wall-degrading enzymes, but other categories such as secreted proteases and ABC transporters had higher transcript levels in Py. ultimum. Species-specific genes were identified including new Pythium genes, perforins, which may disrupt plant membranes. Genome-wide ortholog analyses identified substantial diversified expression, which correlated with sequence divergence. Pseudogenization was associated with gene family expansion, especially in gene clusters.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>This first large-scale analysis of transcriptional divergence within oomycetes revealed major shifts in genome composition and expression, including subfunctionalization within gene families. Biotrophy and necrotrophy seem determined by species-specific genes and the varied expression of shared pathogenicity factors, which may be useful targets for crop protection.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29017458</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>05</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>Oct</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Lifestyle, gene gain and loss, and transcriptional remodeling cause divergence in the transcriptomes of Phytophthora infestans and Pythium ultimum during potato tuber colonization.</ArticleTitle>
<Pagination>
<MedlinePgn>764</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12864-017-4151-2</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">How pathogen genomes evolve to support distinct lifestyles is not well-understood. The oomycete Phytophthora infestans, the potato blight agent, is a largely biotrophic pathogen that feeds from living host cells, which become necrotic only late in infection. The related oomycete Pythium ultimum grows saprophytically in soil and as a necrotroph in plants, causing massive tissue destruction. To learn what distinguishes their lifestyles, we compared their gene contents and expression patterns in media and a shared host, potato tuber.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Genes related to pathogenesis varied in temporal expression pattern, mRNA level, and family size between the species. A family's aggregate expression during infection was not proportional to size due to transcriptional remodeling and pseudogenization. Ph. infestans had more stage-specific genes, while Py. ultimum tended towards more constitutive expression. Ph. infestans expressed more genes encoding secreted cell wall-degrading enzymes, but other categories such as secreted proteases and ABC transporters had higher transcript levels in Py. ultimum. Species-specific genes were identified including new Pythium genes, perforins, which may disrupt plant membranes. Genome-wide ortholog analyses identified substantial diversified expression, which correlated with sequence divergence. Pseudogenization was associated with gene family expansion, especially in gene clusters.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">This first large-scale analysis of transcriptional divergence within oomycetes revealed major shifts in genome composition and expression, including subfunctionalization within gene families. Biotrophy and necrotrophy seem determined by species-specific genes and the varied expression of shared pathogenicity factors, which may be useful targets for crop protection.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ah-Fong</LastName>
<ForeName>Audrey M V</ForeName>
<Initials>AMV</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shrivastava</LastName>
<ForeName>Jolly</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Judelson</LastName>
<ForeName>Howard S</ForeName>
<Initials>HS</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA. howard.judelson@ucr.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>10</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063990" MajorTopicYN="N">Gene Ontology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058507" MajorTopicYN="N">Host Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006790" MajorTopicYN="N">Host-Parasite Interactions</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008019" MajorTopicYN="N">Life Style</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="N">Phytophthora infestans</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035281" MajorTopicYN="N">Plant Tubers</DescriptorName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011775" MajorTopicYN="N">Pythium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011198" MajorTopicYN="N">Solanum tuberosum</DescriptorName>
<QualifierName UI="Q000469" MajorTopicYN="Y">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="Y">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Comparative genomics</Keyword>
<Keyword MajorTopicYN="N">Evolution</Keyword>
<Keyword MajorTopicYN="N">Gene family</Keyword>
<Keyword MajorTopicYN="N">Oomycete</Keyword>
<Keyword MajorTopicYN="N">Plant pathogen</Keyword>
<Keyword MajorTopicYN="N">RNA-seq</Keyword>
<Keyword MajorTopicYN="N">Regulatory subfunctionalization</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>04</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>10</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29017458</ArticleId>
<ArticleId IdType="doi">10.1186/s12864-017-4151-2</ArticleId>
<ArticleId IdType="pii">10.1186/s12864-017-4151-2</ArticleId>
<ArticleId IdType="pmc">PMC5635513</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant Pathol. 2016 Jan;17 (1):29-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25845484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Mar;201(4):1150-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24649486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2015 Dec;35:57-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2012 Oct;59:37-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22321616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2012 Sep;44(9):1060-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22885923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2014 Feb;15(2):133-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24393451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2008 Mar;24(3):109-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18249461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D196-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19892828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Nov;77(21):7721-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21890677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2011 Apr 01;3(4):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21441587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2000 Aug;146 ( Pt 8):1775-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2005 Jan 3;168(1):17-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15631987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Mar 29;339(6127):1615-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23539604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2012 May;61(3):539-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22357727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Apr;63(4):1467-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9097445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e59517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23536880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2002 Oct;8(10):1055-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12357231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2015 Jun 18;15:123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26081847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2005 Jun;46(6):902-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15799997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(4):953-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Nov 16;11:637</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21080964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Feb 1;24(3):319-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18042555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Sep;13(9):2178-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12952885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2000 Sep;90(9):1049-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Feb 27;15:164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24571091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2005 Apr;42(4):319-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2015 Jun;79(2):243-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25971588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2004 Jan 1;5(1):17-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2013 Feb;12(2):194-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23204192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 May 08;14:126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24886309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15258-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21878562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Genet. 2014;85:201-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24880736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Jun;21(6):820-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18624645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2015 Apr;112:54-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25264341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Mar 14;6(3):e17767</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21423760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2010 Jan;156(Pt 1):23-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19833770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2015 May;16(4):413-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25178392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Sep 02;10 (9):e0136899</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26332397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2014 May;16(5):709-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24602217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e47624</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23077652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Feb 01;12(2):e1005435</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26828434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Commun Integr Biol. 2008;1(2):196-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19513258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 May;147(1):41-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18354039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Aug;21(8):1058-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18616402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Nov 04;5:15565</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26531059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2010 Dec;56(6):495-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20725833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1974 Jul;54(1):116-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16658825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):2-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2006 Aug;67(16):1800-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16430931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Sep 12;8(9):e72572</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24069150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2014 Jun;31(6):1625-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24694831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Oct 04;8(10):e75072</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24124466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1654-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19171904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2012 Jan;249(1):3-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21424613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 Jun 25;14(6):R63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23799990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:191-223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18257708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2015 Apr;233:53-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25711813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2011 May;102(10):6073-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21377353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Apr;75(7):2148-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19201950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Aug 05;17 :555</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27496087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1850-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16141373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 Jun;213(2):241-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11469589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cent Eur J Immunol. 2014;39(1):109-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26155110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2008 Nov;10(11):2271-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18637942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2006 Nov;67(21):2318-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2014 Nov;72 :192-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25192612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Sep 28;11:525</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20920201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Dec 9;12 (12 ):e1006097</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27936244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Apr 19;6:24638</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27091329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2014;52:427-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25001456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jun 10;286(23):20913-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21502323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2005 Jan 17;345(1):119-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15716085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 Feb 23;18(1):198</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28228125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Sep 23;9:392</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 1989 Jun;5(1-2):61-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2699252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Jan 03;15:6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24422981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2006 Jan 19;7:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16423292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasitol Today. 1993 Apr;9(4):122-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15463728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(7):R73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20626842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Oct 4;342(6154):118-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24092744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>OMICS. 2004 Spring;8(1):15-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15107234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Spectr. 2017 Jan;5(1):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28155813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Aug;14(4):407-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21641854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Feb;24(2):163-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21043575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2010 May;35(5):253-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20189811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2010 May;59(3):307-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 Jul;9(4):495-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Apr;14(1):13-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15494051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Mar;167(3):1158-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25596183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Mar;161(3):1433-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23335625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Apr;21(4):433-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18321189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6131-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24753594</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Ah Fong, Audrey M V" sort="Ah Fong, Audrey M V" uniqKey="Ah Fong A" first="Audrey M V" last="Ah-Fong">Audrey M V. Ah-Fong</name>
</noRegion>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
<name sortKey="Shrivastava, Jolly" sort="Shrivastava, Jolly" uniqKey="Shrivastava J" first="Jolly" last="Shrivastava">Jolly Shrivastava</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000974 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000974 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29017458
   |texte=   Lifestyle, gene gain and loss, and transcriptional remodeling cause divergence in the transcriptomes of Phytophthora infestans and Pythium ultimum during potato tuber colonization.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29017458" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024